主页 > 医学动态 >

【medical-news】改进电刺激用于治疗帕金森,消沉和

Researchers at UT Southwestern Medical Center have designed a way to improve electrical stimulation of nerves by outfitting electrodes with the latest in chemically engineered fashion: a coating of basic black, formed from carbon nanotubes.

The nanotube sheathing improves the signals received and transmitted by electrodes, which researchers say is a potentially critical step for advancing electrical nerve stimulation therapy. This type of therapy increasingly shows promise for diseases ranging from epilepsy to depression to chronic leg and back pain.

By implanting electronic nerve stimulators, doctors elsewhere have provided a quadriplegic patient with the ability to move a computer cursor at will, and monkeys have been able to move objects in a virtual world with mere mind power. For individuals who lose an arm or leg and rely on prosthetics, implanted stimulators offer promise in restoring feelings of sensation.

"The key to success for these types of brain-machine interfaces is where the electrode meets the nerve tissue," said Dr. Edward Keefer, instructor of plastic surgery at UT Southwestern and lead author of the study appearing in a recent issue of Nature Nanotechnology. "When we coat the electrodes with carbon nanotubes, it improves the stimulation of the nerve and the feedback from the sensors."

Depending on the way the nanotubes are fashioned, researchers were able to bolster either the stimulation or receptive capabilities to improve performance. In some tests, the nanotube coating improved performance by fortyfold, while in others it improved by a factor of as much as 1,600.

Nanotubes look like lattices rolled into a tube on a microscopic scale. Although they are 1/50,000 the width of a human hair, nanotubes are nonetheless among the stiffest and strongest fibers known, as well as excellent conductors of electricity.

Those properties proved to be just the attributes needed to help electrophysiologists conquer some of the hurdles facing them – issues such as battery power and chemical stability.

The carbon nanotube coating improves conductivity, which means less energy is needed to power the nerve stimulator. That can help reduce routine maintenance, such as the need to change batteries in implanted stimulation devices, as well as reduce tissue damage caused by the electrical charge.

"Our process is like taking a Ford Pinto, pouring on this chemical coating, and turning it into a Ferrari," Dr. Keefer said.

Researchers have tried several types of electrochemical coatings to see if they could improve conductivity, but the coatings often break down quickly or fail to stay affixed to the electrodes. The carbon nanotube coating shows far more promise, although further research is still needed, Dr. Keefer said.

"The development of new technologies by Dr. Keefer to potentially restore function in wounded tissues and future transplantations is exciting," said Dr. Spencer Brown, assistant professor of plastic surgery who heads research in the Nancy Lee and Perry R. Bass Advanced Plastic Surgery and Wound Healing Laboratory at UT Southwestern.

Other UT Southwestern researchers involved with the study include Dr. Barry Botterman, associate professor of cell biology, and Dr. Mario Romero-Ortega, assistant professor of plastic surgery. Researchers from Texas Scottish Rite Hospital for Children, Vanderbilt University and the University of North Texas also participated. The research was supported in part by Dallas-based Plexon, Inc.

http://www.mphtimes.com/us/index.php?option=com_content&view=article&id=743:coating-improves-electrical-stimulation-therapy-used&catid=42:neurology--neuroscience&Itemid=82 最近考试,很久没逛园子了。
本人认领此篇文章,24小时未上传则视为放弃,请其他战友继续 Researchers at UT Southwestern Medical Center have designed a way to improve electrical stimulation of nerves by outfitting electrodes with the latest in chemically engineered fashion: a coating of basic black, formed from carbon nanotubes.
犹他州西南医学中心的研究人员设计一种通过最新的化学工程模式的舾装电极以提高神经的电刺激的方法:碱性的黑涂层,形成碳纳米管。 犹他州西南医学中心的研究人员设计一种通过最新的化学工程模式的舾装电极以提高神经的电刺激的方法:碱性的黑涂层,形成碳纳米管。

护套的碳纳米管通过电极提高了信号的接收和转换,研究人员表示,这是推进神经电刺激疗法潜在的关键一步。越来越多的这种类型治疗表明治疗范围从癫痫到抑郁症慢性腿部和背部疼痛。

通过植入电子神经刺激器,为医生提供了一个四肢瘫痪患者有能力移动一个电脑光标的信息,以及仅仅是考虑到精神力量,猴子已经能够移动物体到一个虚拟的世界。对于失去了手臂或腿部后依靠假肢个人,植入刺激器提供恢复感情感觉的保证。

阅读本文的人还阅读:

【drug-news】利用干细胞打

【Nature】治疗脑卒中等神

【medical-news】心脏治疗导

改良同轴导管技术经皮经

【medical-news】疼痛治疗处

作者:admin@医学,生命科学    2010-10-26 17:11
医学,生命科学网