主页 > 生命科学 >
【bio-news】Nature:DNA修复谜题基本解开
现在,Eleni Mimitou 和Lorraine Symington对这个问题做了一定的澄清。细胞的做法是,采用一个由两步组成的过程:在这个过程中,一个短寡核苷酸首先被Mre11复合物从一个链上除掉,然后核酸外切酶ExoI和解旋酶Sgs1加载到这一基质上,生成尾端为3\'的分子。
原始出处:
Nature 455, 770-774 (9 October 2008) | doi:10.1038/nature07312
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
Eleni P. Mimitou1 & Lorraine S. Symington1
Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA
DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'–3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11–Rad50–Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.
来源:互联网 [标签:content1][标签:content2]
阅读本文的人还阅读:
作者:admin@医学,生命科学 2011-02-13 17:11
医学,生命科学网